

Microelectromechanical System (MEMS) Switch Test

by Stanley Karter and Tony Ivanov

ARL-TR-5439 January 2011

Approved for public release; distribution unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position

unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or

approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Adelphi, MD 20783-1197

ARL-TR-5439 January 2011

Microelectromechanical System (MEMS) Switch Test

Stanley Karter and Tony Ivanov

Sensors and Electron Devices Directorate, ARL

Approved for public release; distribution unlimited.

ii

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the

data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the

burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently

valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

January 2011

2. REPORT TYPE

Final

3. DATES COVERED (From - To)

July 2010

4. TITLE AND SUBTITLE

Microelectromechanical System (MEMS) Switch Test

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Stanley Karter and Tony Ivanov

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory

ATTN: RDRL-SER-E

2800 Powder Mill Road

Adelphi, MD 20783-1197

8. PERFORMING ORGANIZATION

 REPORT NUMBER

ARL-TR-5439

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT

 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Analyzing microelectromechanical system (MEMS) switch behavior is a new field of study, which guides the production of

MEMS switches. I analyzed switch behavior using a digital circuit synthesized on a field-programmable gate array (FPGA)

chip. The chip had two outputs and one input connected to a MEMS switch and a radio frequency (RF) generator. It opened

and closed the switch repeatedly and measured the resistance across that switch. The circuit consisted of the switch, a resistor,

and the voltage out signal. I calculated the switch resistance from the voltage output applied on one end of the switch and the

voltage input that lies between the switch and the resistor. The second output was the bias voltage needed to close the switch.

A DA/AD converter translated the digital signal from the chip to the analog signal interacting with the switch. Parameters,

such as the bias voltage, were entered into the chip using a software application on a computer.

15. SUBJECT TERMS

RF-MEMS, reliability, lifetime test

16. SECURITY CLASSIFICATION OF:

17. LIMITATION

OF ABSTRACT

UU

18. NUMBER

OF PAGES

24

19a. NAME OF RESPONSIBLE PERSON

Tony Ivanov

a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

(301) 394-3568

 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures iv

1. Introduction 1

2. Experimental Procedure 2

3. Switch Contact Resistance Derivation 4

4. HDL and Software Coding 4

5. Results and Discussion 5

6. Summary and Conclusions 5

7. Suggested Future Work 6

Appendix 7

Distribution List 18

iv

List of Figures

Figure 1. Block diagram of the reliability test system. ...2

Figure 2. The circuit diagram used to extract the contact resistance value.3

Figure 3. Structure of a typical RF-MEMS switch. ..3

Figure 4. FPGA generated waveforms and the expected output for a good, stuck open and
stuck closed switch. ...5

1

1. Introduction

Analyzing Microelectromechanical System (MEMS) switch behavior is a new field of study,

which guides the production of MEMS switches. One issue of primary importance is the

degradation of contact resistance over the lifetime of the device and whether small variations in

the resistance initially can be prognostically used to predict future performance. Unfortunately,

commercially available equipment is limited by its data collection rate and is not a realistic

option to examine every cycle of a switch expected to potentially survive for several trillion

cycles. In addition, these tests must be performed on tens to hundreds of switches, necessitating

the need for a parallel measurement solution.

To overcome these challenges, a field-programmable gate array (FPGA)-based solution is being

developed. The FPGA chip, coupled with a 16 bit dual channel AD/DA converter will serve as

the input source to each switch and the measurement system, diagnosing contact performance

every cycle. Although customizable to any switch configuration, the purpose of this project was

to determine the feasibility of testing single-pole-single-throw (SPST) RF-MEMS switches,

which contain four terminals: bias/actuation, RF-input, RF output, and ground. The project was

broken down into three phases. First, the algorithms necessary for the system to function, both in

terms of testing and meaningful data display, were developed. Next, based on those algorithms,

the FPGA implementation options, direct HDL programming and software defined

microcontroller usage, were analyzed to determine the appropriate system to reduce

implementation complexity while maximizing scalability. Finally, the initial circuit code was

created to demonstrate a proof-of-concept system functioning on a single switch.

Switch behavior will be analyzed using a digital circuit synthesized on an FPGA chip. The chip

has two outputs: the first output biases the MEMs switch; the second output feeds a digital-to-

analog (DAC) converter which provides the drive signal for testing the switch. It will open and

close the switch repeatedly at approximately 20 KHz. An external resistor of 10 kΩ will be

connected in series with the switch. The analog output voltage across that resistor will be

measured (in both open and closed states) and fed into an analog-to-digital converter (ADC).

This bit stream will then be fed into the FPGA which will calculate the switch resistance based

upon the voltage drop across the external resistor, the voltage drop across the series connection

of the external resistor and the switch, and the resistance of the external resistor. All parameters,

such as the bias voltage, will be entered into the chip using a software application on a computer.

This FPGA-based instrumentation presents a higher frequency measurement capability for

MEMs switches than is currently available commercially in the industry. By using low-cost

FPGA’s, this setup can easily be scaled up into as many as 100 parallel tests that will enable

reliability studies that require hundreds of millions of switch cycles.

2

2. Experimental Procedure

A block diagram of the system is shown in figure 1. The system will use two DAC generated

output voltages, one for device bias and one as a forcing voltage, to generate the test signals. The

resistance of the RF-MEMS switch contacts is then calculated based on an ADC measurement of

the voltage across an external resistor. The Resistance of the switch will be calculated twice

every cycle (in both open and closed states) using the circuit diagram shown in figure 2. The

FPGA was programmed using VHDL, and a 16-bit dual channel AD/DA converter was utilized.

A variety of MEMS switches can be experimented on as DUTS. Each switch can undergo up to

10 billion cycles. The apparatus will send resistance values and number of completed cycles at a

set rate to memory. Memory will be provided by a computer connected to the apparatus by

Ethernet.

Figure 1. Block diagram of the reliability test system.

3

Figure 2. The circuit diagram used to extract the contact resistance value.

The apparatus will look for two types of general failures: temporary and permanent. Both types

of failures have two possible modes: stuck open and stuck closed. Once a temporary failure is

detected, the switch resistance and number of cycles will be sampled. After crossing a set limit of

consecutive temporary failures, the switch will be considered as having permanently failed. A

common MEMS switch along with signal contact locations is shown in figure 3.

Figure 3. Structure of a typical RF-MEMS switch.

4

3. Switch Contact Resistance Derivation

Rext: external resistor (10 kΩ)

Rswitch: resistance of closed or open switch

Vout: output voltage signal

Vin: voltage signal across external resistor

Derivation of formula for equating Rswitch:

Vout = i(Rswitch + Rext)

Vin = i(Rext)

i = Vin/Rext

Vout = iRswitch + Vin

Vout = (Vin/Rext) * Rswitch + Vin

Vout = Vin * (Rswitch/Rext + 1)

Vout/Vin = Rswitch/Rext + 1

(Vout/Vin – 1) * Rext = Rswitch

4. HDL and Software Coding

A software based application was used to prototype the primary VHDL module. The VHDL

module was responsible for producing each output voltage and measuring the response of the

switch. The waveforms generated by the VHDL module, along with the expected responses, are

shown in figure 4. In the final module, each input voltage will be converted to a 16-bit array,

which will be sent to the storage memory via Ethernet. The module and four finite state

machines will constitute the synthesized portion of the FPGA chip. The four finite state

machines will consist of two other VHDL modules and two C++ scripts contained inside a

synthesized microprocessor. They will allow communication between the computer and the

primary module. The five finite state machines will be connected in the following order: primary

module, FIFO, check FIFO (C++), transfer data, and check transfer data (C++). The FIFO

module uses the first in first out system to take individual sets of data, store them, and then

transfer them in segments. The transfer data module completes the process.

5

Figure 4. FPGA generated waveforms and the expected output for a good, stuck open and stuck closed switch.

5. Results and Discussion

The apparatus will open and close the switch repeatedly at approximately 20 KHz. The analog

output voltage of the switch will be measured (in both open and closed states) and fed into an

ADC. This bit stream will then be fed into the FPGA which will calculate the switch resistance

based upon the voltage drop across the resistor and switch. All parameters such as the bias

voltage will be entered into the chip using a software application on a computer.

6. Summary and Conclusions

The FPGA chip has the available space for the VHDL coded digital circuitry.

6

7. Suggested Future Work

By using low-cost FPGA’s this setup can easily be scaled up into as many as 100 parallel tests

that will enable reliability studies that require hundreds of millions of switch cycles.

7

Appendix

Software based application used to enter parameters into FPGA (C++):

#include <iostream.h>

//parameters entered

int main() {

 double potential_out_real, bias_switch_real;

 int cycle_sampling_rate;

 int catastophic_failure_stuck_open_count_limit;

 int catastophic_failure_stuck_closed_count_limit;

 int bias_switch_binary[16];

 int potential_out_binary[16];

 cout << "Welcome to Switch Test\n";

 cout << "Enter the following values:\n";

 cout << "cycle_sampling_rate: ";

 cin >> cycle_sampling_rate;

 cout << "catastophic_failure_stuck_open_count_limit: ";

 cin >> catastophic_failure_stuck_open_count_limit;

 cout << "catastophic_failure_stuck_closed_count_limit: ";

 cin >> catastophic_failure_stuck_closed_count_limit;

 cout << "output_voltage: ";

 cin >> potential_out_real;

 cout << "bias_switch_voltage: ";

 cin >> bias_switch_real;

 cout << "values entered\n";

//bias_switch_real and potential_out_real converted to 16bit binary numbers

//first set of 8bits are integer and second set of 8bits are fraction

 int integer_used_for_conversion = bias_switch_real;

 double fraction_used_for_conversion = bias_switch_real - integer_used_for_conversion;

 bias_switch_binary[8] = integer_used_for_conversion%2;

 integer_used_for_conversion = integer_used_for_conversion/2;

 for (int i = 9; i<16; i++) {

 bias_switch_binary[i] = integer_used_for_conversion%2;

 integer_used_for_conversion = integer_used_for_conversion/2;

 }

8

 if (fraction_used_for_conversion*2>=1) {

 fraction_used_for_conversion = fraction_used_for_conversion*2-1;

 bias_switch_binary[7] = 1;

 }

 else {

 fraction_used_for_conversion = fraction_used_for_conversion*2;

 bias_switch_binary[7] = 0;

 }

 for (int ii = 6; ii>=0; ii--) {

 if (fraction_used_for_conversion*2>=1) {

 fraction_used_for_conversion = fraction_used_for_conversion*2-1;

 bias_switch_binary[ii] = 1;

 }

 else {

 fraction_used_for_conversion = fraction_used_for_conversion*2;

 bias_switch_binary[ii] = 0;

 }

 }

 integer_used_for_conversion = potential_out_real;

 fraction_used_for_conversion = potential_out_real - integer_used_for_conversion;

 potential_out_binary[8] = integer_used_for_conversion%2;

 integer_used_for_conversion = integer_used_for_conversion/2;

 for (int n = 9; n<16; i++) {

 potential_out_binary[n] = integer_used_for_conversion%2;

 integer_used_for_conversion = integer_used_for_conversion/2;

 }

 if (fraction_used_for_conversion*2>=1) {

 fraction_used_for_conversion = fraction_used_for_conversion*2-1;

 potential_out_binary[7] = 1;

 }

 else {

 fraction_used_for_conversion = fraction_used_for_conversion*2;

 potential_out_binary[7] = 0;

 }

 for (int nn = 6; nn>=0; nn--) {

 if (fraction_used_for_conversion*2>=1) {

 fraction_used_for_conversion = fraction_used_for_conversion*2-1;

 potential_out_binary[nn] = 1;

 }

 else {

 fraction_used_for_conversion = fraction_used_for_conversion*2;

9

 potential_out_binary[nn] = 0;

 }

 }

//insert code: transfer the three integer parameters and two bit arrays into FPGA

}

10

Primary VHDL module (VHDL):

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

USE ieee.std_logic_unsigned.all;

USE ieee.numeric_std.ALL;

ENTITY switch_test_tb IS

END switch_test_tb;

ARCHITECTURE behavior OF switch_test_tb IS

 -- Component Declaration for the Unit Under Test (UUT)

 COMPONENT switch_test

 PORT(

 clock : IN std_logic;

 bias : OUT std_logic_vector(7 downto 0);

 voltage_out : OUT std_logic_vector(7 downto 0);

 voltage_in : IN std_logic_vector(7 downto 0)

);

 END COMPONENT;

 --Inputs

 signal clock : std_logic := '0';

 signal voltage_in : std_logic_vector(7 downto 0) := (others => '0');

 --Outputs

 signal bias : std_logic_vector(7 downto 0);

 signal voltage_out : std_logic_vector(7 downto 0);

 -- Clock period definitions

 constant clock_period : time := 10 ns;

BEGIN

 -- Instantiate the Unit Under Test (UUT)

 uut: switch_test PORT MAP (

 clock => clock,

 bias => bias,

 voltage_out => voltage_out,

 voltage_in => voltage_in

);

11

 -- Clock process definitions

 clock_process :process

 begin

 clock <= '0';

 wait for clock_period/2;

 clock <= '1';

 wait for clock_period/2;

 end process;

 -- Stimulus process

 stim_proc: process

 begin

 -- hold reset state for 100 ms.

 wait for 100 ms;

 wait for clock_period*10;

 -- insert stimulus here

 wait;

 end process;

END;

12

FIFO (VHDL):

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating

---- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity fifo is

port (clock: in std_logic);

end fifo;

architecture Behavioral of fifo is

type state_type is (s1,s2,s3,s4,s5);

signal state : state_type:=s1;

signal write_enable,write_now, write_acknoledge: std_logic ;

begin

sequential_network: process (clock, write_acknoledge)

begin

if clock'event and clock = '1' then

case state is

when s1 =>

--initial state

 state <= s2;

when s2 =>

--insert code: data on bus

 state <= s3;

when s3 =>

--set write_now to '1'

 write_now <= '1';

 state <= s4;

when s4 =>

--insert code: wait for write_acknoledge

 if write_acknoledge = '1' then

 state <= s5;

13

 else

 state <= s4;

 end if;

when s5 =>

--set write_now to '0'

 write_now <= '0';

 state <= s1;

when others =>

 null;

end case;

end if;

end process;

write_enbl_combinational_logic: process (write_now, write_acknoledge)

begin

write_enable <= (not write_acknoledge) or write_now;

end process;

end Behavioral;

14

Check FIFO (C++):

#include <iostream.h>

int main() {

 bool empty = true;

 char state = '1'; //'1','2','3',or '4'

 switch (state) {

 case '1': //initial state

 state = '2';

 break;

 case '2': //insert code: check fifo (VHDL module)

 if (empty)

 state = '1';

 else

 state = '3';

 break;

 case '3': //inset code: get data

 state = '4';

 break;

 case '4': //insert code: store data locally

 state = '2';

 break;

 default:

 break;

 }

}

15

Transfer Data (VHDL):

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating

---- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity transfer_data is

port (clock, x: in std_logic;

 z: out std_logic);

end transfer_data;

architecture Behavioral of transfer_data is

type state_type is (s1,s2,s3);

signal state : state_type:=s1;

begin

sequential_network: process (clock)

begin

if clock'event and clock = '1' then

case state is

when s1 =>

 --initial state

 if x = '0' then

 state <= s1;

 else

 state <= s2;

 end if;

when s2 =>

 --insert code: UDP connection

 if x = '0' then

 state <= s2;

 else

 state <= s3;

 end if;

when s3 =>

16

 --insert code: transfer data

 if x = '0' then

 state <= s3;

 else

 state <= s1;

 end if;

when others =>

 null;

end case;

end if;

end process;

end Behavioral;

17

Check transfer data (C++):

#include <iostream.h>

int main() {

 bool incoming_connection_received = false;

 char state = '1'; //'1','2','3',or '4'

 switch (state) {

 case '1': //initial state

 if (incoming_connection_received)

 state = '2';

 else

 state = '1';

 break;

 case '2': //insert code: make connection for transfer

 state = '3';

 break;

case '3': //inset code: get data

 state = '4';

 break;

 case '4': //insert code: display and store

 state = '1';

 break;

 default:

 break;

 }

}

18

NO. OF

COPIES ORGANIZATION

 1 ADMNSTR

 ELEC DEFNS TECHL INFO CTR

 ATTN DTIC OCP

 8725 JOHN J KINGMAN RD STE 0944

 FT BELVOIR VA 22060-6218

 1 CD OFC OF THE SECY OF DEFNS

 ATTN ODDRE (R&AT)

 THE PENTAGON

 WASHINGTON DC 20301-3080

 1 US ARMY RSRCH DEV AND ENGRG

 CMND

 ARMAMENT RSRCH DEV & ENGRG

 CTR

 ARMAMENT ENGRG & TECHNLGY

 CTR

 ATTN AMSRD AAR AEF T

 J MATTS

 BLDG 305

 ABERDEEN PROVING GROUND MD

 21005-5001

 1 PM TIMS, PROFILER (MMS-P)

 AN/TMQ-52

 ATTN B GRIFFIES

 BUILDING 563

 FT MONMOUTH NJ 07703

 1 US ARMY INFO SYS ENGRG CMND

 ATTN AMSEL IE TD A RIVERA

 FT HUACHUCA AZ 85613-5300

 1 COMMANDER

 US ARMY RDECOM

 ATTN AMSRD AMR

 W C MCCORKLE

 5400 FOWLER RD

 REDSTONE ARSENAL AL 35898-5000

 1 US GOVERNMENT PRINT OFF

 DEPOSITORY RECEIVING SECTION

 ATTN MAIL STOP IDAD J TATE

 732 NORTH CAPITOL ST NW

 WASHINGTON DC 20402

 1 US ARMY RSRCH LAB

 ATTN RDRL CIM G T LANDFRIED

 BLDG 4600

 ABERDEEN PROVING GROUND MD

 21005-5066

NO. OF

COPIES ORGANIZATION

 5 US ARMY RSRCH LAB

 ATTN IMNE ALC HRR

 MAIL & RECORDS MGMT

 ATTN RDRL CIM L TECHL LIB

 ATTN RDRL CIM P TECHL PUB

 ATTN RDRL SER E T IVANOV

 (2 HCS)

 ADELPHI MD 20783-1197

TOTAL: 13 (1 ELEC, 1 CD, 11 HCS)

